Farm Tender

The Rising significance of resistant Barley Grass

By Cindy Benjamin - WEEDsmart

Barley grass has a number of tactics up its sleeve to help evade both herbicide and non-herbicide weed control methods. This has made it a weed of interest for the University of Adelaide’s Weed Science Group, led by Associate Professor Gurjeet Gill, who are investigating the ecology of emerging weeds in the low rainfall zones of southern Australia.


University of Adelaide researchers Dr Gurjeet Gill and Ben Fleet say that understanding weed ecology and undertaking herbicide screening will help find ways to manage increasing resistance in barley grass.

With investment from the GRDC, Dr Gill and his team analysed the dormancy traits and herbicide resistance status of 146 random samples of barley grass collected by agronomists in WA, SA, Victoria and NSW in 2018.

Of the 146 random samples collected, five per cent of populations showed resistance to Group A herbicides and 21 per cent showed resistance to Group B herbicides. There was no evidence of resistance to glyphosate or paraquat.

There were also large differences between the populations in the level of seed dormancy as seen by the timing of seedling emergence in autumn. Barley grass populations from the Eyre Peninsula in particular were much slower to establish than those from other low rainfall regions. Late emerging weeds can escape weed control with knockdown herbicides.

In a later study, growers from the Eyre Peninsula Agricultural Research Foundation (EPARF) collected samples of barley grass seed in 2019 from paddocks where growers had experienced difficulty in controlling barley grass with herbicides. These samples were tested for resistance screening in 2020.


Resistance screening of barley grass from suspect paddocks on the Eyre Peninsula, SA.

“The expectation was that most populations from the targeted survey in 2019 would be resistant to Group A herbicides,” says Dr Gill. “Resistance to the Group A herbicides was confirmed in 17 of the 22 populations from EP, or 77 per cent. Within this Group, resistance to quizalofop was 100 per cent for the suspect populations while there remains some useful activity from clethodim and butroxydim, which will help the growers in the short term.”


Herbicide resistant barley grass shows no response to a high rate of the commonly-used Group A herbicide, quizalofop (right) compared to a plant from a susceptible population (left).

The same populations were also tested with Group B imidazolinone chemistry, which offers some activity against Group A resistant barley grass, although one of the EP populations was completely resistant to the IMI herbicide. The good news is all of these populations remain susceptible to glyphosate and paraquat.

Dr Gill says that research and field observation confirm there is significant variability in barley grass populations’ ecology and herbicide resistance status.

“Understanding how different barley grass populations behave is key to their management,” he says. “The seed dormancy and seed shedding traits of a population have important implications in terms of management options. Barley grass often evades pre-emergent herbicides through delayed emergence and at the other end of the season barley grass often sheds its seed before crop maturity, so harvest weed seed control is rendered ineffective in many circumstances.”

Barley grass is susceptible to strong crop competition, and on mixed farms Dr Gill says some farmers have had success using pyroxasulfone herbicide in wheat ahead of a pasture phase, where good grazing management can limit seed production in barley grass.

Applying the WeedSmart Big 6 integrated weed management strategy to barley grass will keep herbicides working for longer and maximise the impact of cultural control tactics.

https://weedsmart.org.au/